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ABSTRACT

The field emission of cesium ions from a positive electrode
is formulated for the range of electric field over which an image
potential binds the ions to the electrode surface.

Recent investigations on the ijonization of gas atoms by a
metal surface are utilized, in conjunction with steady-statz argu-
ments, to yield an expression for the ion supply at the electrode
surface. A tunnelling process in the presence of an electric
field is then considered, and the ion emission obtained in terms
of fundamental constants and pertinent parameters.

As part of the overall problem, the effect on the emission
current of fractional adsorbed atomic layers on the electrode is
examined; not surprisingly, the non-uniform properties of a real
electrode lead to the same difficulties in the description of ion
emission as those met in the case of electron field emission.
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I. INTRODUCTION

The field emission of ions from an electrode has important
consequences for discharge-produced plasmas operating at rela-
tively Tow temperatures (T < 800°K). It plays a key role in
determining, among other things, the potential function in the
electrode vicinity.

The present investigation is directed towards a formulation
of field ion emission for that range of electric field wherein
an image-force well binds the ions to the electrode surface.
This is the range normally encountered in plasmas produced by a
gaseous discharge, and information about the ion current field-
emitted into the plasma will give some insight into the anode-
plasma accommodation necessary for stable operation.

With very high electric fields (101% v/m and above), the
image potential well of an ion in the vicinity of a metal elec-
trode is completely collapsed. For this situation, the emission
proceeds under conditions very different from those considered
here. The emission for the very high field range has been in-
vestigated by Good and Miiller!, among others, in connection with
desorption techniques and Field Ion Microscope studies.

The general approach to the present problem will be as
follows:

1. The anode surface will be considered as a featureless,



two-dimensional continuum, with an ion supply available thereat
via a surface ionization process by which neutral adsorbed atoms
lose a valence electron to the metal through a tunnelling effect.
The resulting ion is bound in a combination image and van der
Waals potential well, with the latter supplying a strong close-
range repulsion effect. Since the surface jonization process
cannot go on indefinitely, equilibrium and steady-state arguments
are utilized to give the surface jon number density. The expres-
sion resulting from the steady-state situation is then used as a
starting point in obtaining the ion supply function.

2. If an electric field exists at the anode surface and
vicinity such that the anode is positive with respect to the
plasma, then the ion potential well is modified so that it is
finite, with a barrier forming between well and plasma.

3. A tunnelling process is then considered by which the
ions are emitted into the plasma, this emission being formulated
in terms of the surface field, ion species, temperature, etc.

The problem is thus very similar to that of electron field
emission, except that some important modifications arise in the
ion supply function and in the tunnelling process. For the case
of ion emission, energies up to the barrier top must be consid-
ered, whereas the electron field emission process can! conveni-
ently be terminated in the neighborhood of the metal fermi level.

The specific case of a tungsten anode with cesium vapor as



the discharge medium will be considered throughout. The discuss-
ion is fairly general, however, and such modifications as may be
required for extension to other situations should not be of a ma-
jor nature, especially for the heavier alkali metal vapors as
discharge media.

It is important to point out that for ordinary emission den-
sities, the present lack of a rigorously valid surface jonization
rate expression does not significantly impair the validity of the
results here obtained. This js discussed more fully in Sec.VI,
where it is pointed out that over the range of emission densities
normally encountered, the emission equation is quite insensitive
to the details of the ionization rate. Some physical consider-
ations that support this result, and in fact require it, are also
presented there.

In Secs.II and III, the model on which the ion supply funct-
ion is based is presented. In Sec.IV, a brief statement is made
regarding the well-known formulation of the emission process in
terms of a “supply function" and "transmission coefficient", and
the rest of the section is then devoted to obtaining the supply
function. Section V gives the transmission coefficient, and this
is combined in Sec.VI with the result of Sec.IV to obtain the
emission current. In Sec.VII, the observed? dependence of the
electrode work function on the adsorbed neutral atom fraction is

considered, and the emission equation then discussed in Sec.VIII.



IT. EQUILIBRIUM ION DENSITY ON ANODE SURFACE

Consider first a plane, cold, metal electrode with no applied
electric field. The energetics involved when a neutral atom ap-
proaches the anode (treated here as an idealized, structureless
plane) can be represented as in Fig. 1. This diagram shows the
potential energy scheme for the valence electron of the neutral
atom as modified by the image forces present in the vicinity of

the anode.

| V=0

Fig.1. Potential energy of valence electron near metal.

In Fig.1, x denotes the distance along the normal to the surface,
with the zero of energy taken as that of a point distant from
both electrode and atom core. The fermi level e¢p for the metal
is measured from the bottom of the conduction band, and ¢ is the
metal work function. The level -Wj is the perturbed ground state

energy of the valence electron below the V = 0 reference, with



W) > 0. The valence level is shifted3 at small distances from
the electrode by the surface interaction. Due to the probability
of the transition of the valence electron into the metal (see
below), the level is also broadened. This is not shown in Fig.1
and in subsequent figures for the sake of clarity.

If ¢ > W) for a particular combination of metal and neutral
atom, then the transition of the valence electron into the metal
indicated in Fig.1 may take place, leading to ionization of the
neutral atom by the metal surface. The theory of this process
has recently been discussed by Boudreaux and Cutler“:>, and by
Gadzuk®, who considers the specific case of cesium on tungsten.
Experimentally, the production of ions at a metal surface was
observed many years ago. Taylor and Langmuir? give an excellent
account of this.

The above process clearly cannot continue indefinitely, so
that some mechanism must exist that limits the production of ions
at the surface. Otherwise, a metallic electrode would eventually
remove all gas atoms from the surrounding space, since the sur-
face ions would be bound by an image potential, and successive
adsorptions and ionizations of the gas atoms outside the elec-
trode would in time result in their all being firmly bound to the
electrode in the ionic state.

An obvious Timiting mechanism is available in the form of

backward transitions, i.e., the neutralization of surface-bound



ions by electrons tunnelling from the metal. This sort of pro-
cess has been extensively studied by Hagstrum’-10,

Much more recently, Gadzuk3, in a second calculation towards
obtaining the ionization rate, makes the detailed-balance assump-
tion that the jonization and neutralization rates must be equal.
This must be true eventually (for no ion current), but when, and
under what conditions? He unfortunately does not elaborate on
this point, and so one of the objectives of the present investi-
gation is to obtain an estimate of the conditions necessary for
the equality of the ionization and neutralization rates. It will
be seen that a method for obtaining the surface ion density emer-
ges from the analysis.

The difficulty with most of the published investigations on
both ionization and neutralization transition rates is that they
have so far been considered completely out of context, with no
concern for the effects and/or demands of associated circuitry
and Tocal surface conditions. Thus, for example, the neutrali-
zation rate must of necessity depend on the ion density on the
electrode surface, with an obviously zero rate for zero ion den-
sity. But if neutralization requires a non-zero surface ion den-
sity, the effect of such a density on the neutralization energe-
tics must be taken into account. So far, this has not been done,
so that extant calculations cannot be quite correct. Still an-

other effect that has been neglected but which is significant is



as follows: Whenever the neutral atom is ionized on the surface,
there must necessarily occur a "switch" in potential for the re-
sulting ion. That is, the ion now finds itself in a combination
adsorption and image potential well that is much deeper (~1 ev)
than the purely adsorption well that bound the neutral atom. Thus
a surface ionization process is not describable by simply consi-
dering only the valence electron energetics; the energetics of
all particles taking part in the transition must be taken into
account. Otherwise, the very considerable energy associated with
the switch in potentials simply vanishes (or is created). The
following two processes are likely possibilities in the ioniza-
tion transition:

1. The neutral atom is ionized, with the tunnelling elec-
tron carrying away only the energy difference between the valence
level and the metal level it occupies after the transition. The
resulting ion. which must now be considered as left in excited
states in the adsorption and image well, subsequently decays to
the lower levels via radiative or other transitions; the most
likely among the latter is probably the non-radiative transfer of
energy and momentum to the electrode crystal lattice.

2. The ionization is a single-stage process in which the
tunnelling electron carries away the energy in (1) above and in
addition that available from the switch in potentials. In any

case, the tunnelling electron must decay to Tower levels in the



metal by phonon de-excitation, or by other processes.

Thus the backward transition is ordinarily not as likely as
the forward, or ionization transition. For if neutralization is
to occur, not only must the neutralizing metal electron have suf-
ficient energy to occupy the valence level, but in addition must
supply about 1 ev to "1ift" the ion up to the adsorption well,
e.g., if the unoccupied valence level is at the same energy as
the metal fermi level, only electrons from about 1 ev above ep
can bring about neutralization. At ordinary temperatures, the
population of metal electrons at this level may be too small to
produce a significant neutralization rate. However, consider the
following: If field conditions at the electrode surface are such
that a potential barrier exists for the ions, then it turns out
(see below) that the resulting ion (i.e., charge) accumulation
will modify the transition energetics such that the ionization
rate decreases. At the same time, this ion accumulation renders
the neutralization transitions more numerous in two ways:

(1) more ions are present. (2) the energy requirements are re-
duced, so that the number of metal electrons energetically cap-
able of neutralizing is increased. Thus the increase in ion sur-
face density leads to an increasing neutralization rate on the
one hand, and a decreasing ionization rate on the other. Event-
vally, the two must become equal, as Gadzuk assumes, but only if

no ion current is being drawn from the surface. If the ion



current is non-zero (and this would seem to be the only case of
practical interest), then Gadzuk's assumption cannot be quite
valid. For where would the ion current come from if there were
not a net surface ionization rate i.e., a departure from detail
balance? Such a departure is necssary, therefore, for the at-
tainment of ordinary steady-state conditions.

In this section, the equilibrium situation (no ion current)
will be examined; here detailed balance must occur at some point,
leading to an effective "termination" of ionization.

It would be desirable, of course, to have definite criteria
available for when detailed balance must occur, but these do not
presently exist. However, the existing surface ionization stu-
dies, and especially those of Boudreaux and Cutler>, indicate
that net ionization will cease when the valence electron is at
approximately the same energy as the metal fermi level. Most of
the surface ionization studies require this result for any rea-
sonable correspondence between theory and experiment, and so it
will be assumed that there is some energy €y in the neighborhood
of €p (see Fig.2), that defines the valence electron energy at
which net ionization ceases. The results of Boudreaux and Cutler
indicate that IeF - eb| must be very small (less than 0.1 ev) if
their findings are to correspond with experiment. At any rate,
it turns out that the precise value of € is of no great import- \

ance (see Sec.III) provided that € = € § 0.5 ev, and so € is



shown in Fig.2 with the understanding that it is in the range
0 - 0.5 ev below €p- In the Tight of the foregoing discussion,
consider then the following.

Under equilibrium conditions, the ions, because of their sur-
face mobility, can be regarded over a time interval as being con-
tinuously distributed over the surface and at an average distance
% from it. Hence they can be adequately represented by a sheet
of uniform density at a distance & from the electrode surface.
The adsorbed neutral atoms will likewise appear as a sheet at
some distance s from the surface, but more or less localized
about the lattice adsorption sites. This localization, however,
is of no real importance for the present calculation.

A question which arises is whether the mean distance & of the
jons is greater or less than the mean distance s of the neutral
atoms. This is not easily answered at the present time because
of the scant knowledge of the potentials involved at small dist-
ances from the electrode. Fortunately, the choice of one or the
other of the two possibilities leads only to minor numerical mo-
difications and does not enter into the essence of the calcula-
tion. The choice & < s will be made as the more likely, leading
to a potential energy diagram for an adsorbed neutral atom as in
Fig.2. The same convention is used as for Fig.1. Curve A is the
potential energy of the valence electron in the absence of the

jon sheet. The perturbed valence electron level is -W; as before.

10



x=0 X=% X=5

p—"" —
A P - :-—\ A Vi
AN
\
/ C \ \ l’
K
EF / Ae v
Eb/ — /
— Mean Ion — ~—— Mean Neutral
-] Position Atom Position

T Metal Surface

Note: -W" is measured from V, = -ae?e/eg.

Fig.2. Potential energy of valence electron
in presence of ion sheet.

Curve B is the potential energy contribution due to the ion sheet
of number density o; it is given in MKS units by -ce2x/eq for

X < & and has the constant value -ce22/e; for x 2 2. This of
course is not realistic; because of the ions' motion in their own
well, the potential energy will actually drop off more or less
slowly, depending on the ion temperature. However, this intro-
duces no important changes in the calculation. Finally, curve C
represents the potential energy due to A and B. Because of the

jon sheet, the valence level is again shifted; it is denoted by
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-Wp and is now measured from the new reference Vi = oe?2/eq. The
energy Ae is that of the valence electron above the level €
mentioned earlier, that defines the reference valence level at
which net ionization ceases.

It is clear from Fig.2 that if net ionization requires Ae>0,
then detailed balance must occur when ce?g/ey + W§ = ¢ + e = €ps
whence

o = (co/e2)[o - Wy + e - €] (1)

gives the equilibrium ion number density. As an illustration of
Eq.(1), the case of cesium on tungsten may be considered. There
is a slight difficulty in that the value of W} has not been cal-
culated. However, for illustrational purposes, the value of W}
(3.6 ev) calculated by Gadzuk may be used. The result will not
be affected by very much (see Sec.VII). For tungsten, ¢ = 4.6
evy using ¢ = 4 Z and €, = €ps O = 1.38x10!3 c¢m~2 is obtained
from Eq.(1). In terms of Langmuir's determination of 4.8x101“
cm-2 as a monolayer of neutral cesium on tungsten, this is about
2.8% of a monolayer (though the term does not apply for ions; it
is used only for comparison purposes).

In the above, the effect of thermal ion emission over the
barrier top has been neglected; for zero applied field, the ion
potential barrier is infinite, so that only ions with W > 0 can

contribute to the current. However, the number of ions with
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W > 0 will be negligibly small at ordinary temperatures relative
to those with W < 0. Hence they need not be considered.

A fortunate consequence of Eq.(1) is that the mean spacing
between ions (on the order of 10-® cm) will be a good deal larger
than the average distance of the ions from the surface. Because
of this, it will be possible when considering ion tunnelling in
Sec.V to include only the image and applied fields, with ion-ion
interactions as small and for the present time negligible. More-
over, as current is drawn from the ion reservoir on the surface,
the steady-state ion surface density decreases from the equili-
brium value. The steady-state value of o can be computed by use
of the results of Secs.III and VI; for ordinary emission densi-

ties, o is well below 1013 cm=2,



IIT. STEADY STATE ION DENSITY WITH CURRENT BEING DRAWN

With an applied electric field, two effects will occur:

(a) The applied field further modifies the potential energy
scheme of Fig.2 for the valence electron of the neutral atom.

(b) The potential energy well of whatever ions may be pres-
ent, which binds them to the surface, is also modified and an ion
current will be drawn from the surface ion supply produced by the
surface ionization process.

The effect (b)(wi]] be considered later in connection with
the emission current. The effect of (a) is to contribute a po-
tential energy VF = eEx to the valence electron potential energy,
Fig.2. An additional level shift for the valence electron is to
be expected; the new level will be denoted -Wy'. A simplified po-

tential energy diagram, Fig.3, shows the potential energy due to

all the sources discussed.

¢

€
F
7

Fig.3. Modified valence electron potential energy.
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The energy Ae of the valence electron above the reference
level e, can be expressed in terms of the mean quantities & and

s by
Ae = ¢ + (EF - eb) - [Wy + oe?2/eq - eEs] (2)

where ¢, s, are the mean ion and neutral atom positions, respect-
ively. If now the transition rate w(ae) for neutral - ion on the
surface is known as a function of Ae, and if the adsorbed neutral
atom density is oy, then in the steady state with a current den-

sity j being drawn, it is necessary that
J = eogw(ae). (3)

Equation (3) is generally valid if og is the steady-state value
of the adsorbed neutral atom density. However, it will be seen
later (Sec.VI) that j is very small under practically all condi-
tions, so that oy will usually not differ significantly from its
equilibrium value at j = 0. Thus oy will be considered as known
from an appropriate adsorption isotherm and treated as constant
over the range of j which is of interest here.

An expression for the transition rate w(ae) which is comple-
tely satisfactory is not yet available. The result of Boudreaux
and Cutler®s> appears to be reasonably derived, but the necessary
cut-off in ionization at Ae = 0 does not appear explicitly in

their rate equation, as it actually should. Presumably, what



they have done is to include a cutoff at the fermi level as an

ad hoc addendum to their calculation, but they do not elaborate
on this important point. Also, they are concerned mainly with

a neutral atom approaching the electrode surface, rather than ad-
sorbed thereon. No significant modification should be introduced
by this detail, however.

Gadzuk's calculation® is framed in the same way as those of
Boudreaux and Cutler, except that he considers the neutral atom
as adsorbed on the electrode surface. There are unfortunately
some uncertainties about the details of his derivation. Among
other things, his result is incredibly high: For ac = 1 ev, a
transition rate of about 10!°> sec™! is obtained. Thus even with
the inclusion of a cutoff function for energies close to the
fermi level, the resulting rate would require enormous currents
(see Eq.(3)) for steady-state. Furthermore, he does not consider
the energetics involved when the neutral atom transits, as out-
lined in Sec.lI, from the adsorption potential just prior to ion-
ization to the image potential just after.

In view of the uncertainty here felt about the published
rate expressions, the theory of surface ionization utlized by
the above investigators will be briefly presented, and then an

expression for the ionization rate usable here will be discussed.
Essentially, this will mean representing the transition rate by

a first order approximation in Ae.
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Typically®s>:6, the ionization rate is given to first order

by
W= (2n/RINCe ) I wel Vo lvg D12, (4)

where ep = ey t Ae = e, is the energy of the valence electron
above the bottom of the metal conduction band. N(ef) is the den-
sity of final electron states and is given by N(ef) = constx/E;;
Vp is the perturbing potential (considered as due to surface for-
ces). The states ¢1’ wf are the initial and final electron sta-
tes, respectively, and | wflvp|wi'>|2 is the matrix element for
the transition. Denoting the matrix element and constants ap-
pearing in Eq.(4) by A', one can write w(ae) = A'(eb + ae)l/2,
But by the definition of €p s it is necessary that w(0) = 0, and

so the factor A' must have an expansion of the form
AI - A"Ae + A"'(AS)Z 4 ceeene

where, for Ae small enough, A' = A"Ae to sufficient accuracy. It
will be assumed here, and this is supported in Sec.VII, that this
small Ae approximation will be sufficiently accurate for present

purposes. Thus, in this approximation,
w(ae) = A"Ae(sb + Ae)l/2, (5)

As will be seen later, the variation in Ac over the range of in-

terest is such that ae << eb; this is because e = 5 ev, while
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while Ae, for normal currents, is always less than a few tenths
of an electron volts. Hence (eb + Ae) is sensibly constant, and
w = Aae results. With a fitting such that w = 10° sec™! for

re = 1 ev, A = 1025 sec-! joule-! is obtained. In Sec.VI, it

will be seen that over the most interesting emission current
range, j is insensitive to variation in the value of A over many
orders of magnitude. Thus there is considerable latitude avail-
able in the choice of A, and reasonable results may be expected
from the use of Eq.(6) below as a representation for w(Ae) unless
the assumed linearity in Ae is too far off. The value of A that
has been chosen here is considered, on the basis of Gadzuk's work,
to be a reasonable lower bound; should the true value be larger,
and this seems 1ikely, then the approximation is improved thereby.

Finally, then
w(ae) = Aae = 1025a¢ joule-! sec-! (6)

will be used, with Ae in joules.
Equations (2) and (6) in (3) give
j = Recpre = Aeogle + (eF - eb) - W' -oe?e/ey +eEs],

whence the ion surface density at steady-state is
o = (eg/e?2)[u +eks - j/Aecy], (7)

with y = ¢ + (EF - eb) - Wy'.

18



IV. THE ION SUPPLY FUNCTION

The ions produced on the electrode surface by the surface
ionization process will be bound thereto by a combination image
and van der Waals well of form similar to the dashed curve shown
in Fig.4. Due to the lack of a firm knowledge of the potential
energy for x small, a sharp cut-off at x = xqy = 43 will be as-
sumed. The sharp cut-off is justifiable because of the very
large repulsivell forces that come into play for small x. The
value xg = 43 is taken from adsorption datall and should be rea-
sonably accurate. While other measurement techniques have yield-
ed substantially different values for xg, this value will be ad-

opted as probably the most reliable for use here.

- "/xm = [e/16meoE]?
V=0

_ - X
Without - ”3 X

Fleld~ 7 W = ~[e%E/dneo]
7

With field

Fig. 4. lon potential well.

The application of an electric field E directed along the
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positive x-direction will lead toc two emission processes:

(a) By lowering the barrier maximum of Fig.4, an enhanced
thermal emission will occur.

(b) For ions with energies below W,, emission takes place
by way of a tunnelling effect. This is a strictly field emission
process.

The ion emission density due to (a) will not be considered
here; that due to (b) is given by

W
J=q| NWT(W)dwW, (8)
Wo
where Wy = energy at bottom of potential well, T(W) = transmis-
sion coefficient, N(W) = supply function = number of jons strik-
ing barrier from left per unit time per unit area per unit energy
interval, and q is the ion charge. Only singly ionized atoms
will be considered, so that q = e.

N(W) can be found provided: (1) the ions remain essentially
in equilibrium with emission taking place, and (2) the ion stati-
stics are known. The assumption of equilibrium used in this sec-
tion will be supported by the results of Sec.VI, where the emit-
ted current density is seen to be much smaller than the random
current density. Because of the large ion mass, and also because
the surface density is dilute, Boltzmann statistics apply rigor-

ously for a system of either bosons or fermions. For example,
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a system of fermions with o = 10}3 cm~2 has a fermi temperature
of about 0.01°K.

In this section, N(W)dW will be found. The next section
will deal with the transmission coefficient T(W). These are then
assembled in Sec.VI according to Eq.(8) to give an expression for
the emission current j.

In order to obtain N(W)dW, the ions will be considered as:

1. a three dimensional gas as far as the energetics are con-
cerned. There are two degrees of freedom along the surface and
a vibrational degree of freedom along the normal to the surface.
Equipartition of energy is assumed to hold.

2. describable by a density p(x) = Kexp[-8V(x)], where g is
1/kT. The dimensions of p(x) are ions per unit area per unit x-
interval. While a rigorously valid expression would be given by
p(x) = Kz|yp(x)|2exp(-8H,), where the y, are the energy eigen-
functions for the ions in the potential well, the proposed ex-
pression should be reasonably valid at the temperatures normally
encountered in cesium discharges.

The quantity K in p(x) is a normalization factor such that
Kg:fp(x)dx = g. That is, the ions comprising ¢ are considered
as being essentially localized in xy < x s xp (see Fig.4). Thus

K is given by

K = of [Mexp[-V(x)]dx. | (9)
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It was not found possible to evaluate the integral appearing in
Eq.(9), so that a computer solution had to be resorted to. This
integral is parametric in T and the field E, which enters via the
potential V(x); it will henceforth be denoted by L(E,T). The ion

density function can thus be written

o(x) = (o/L)eBV(X), (10)

with the expression L carried symbolically for now. The computer
solution will be incorporated into the emission equation in Sec-
tion VI.

Consider now the particle current density incident on the
barrier of Fig.4 from the left. The contribution from ions with-

in the momentum interval dpy is

N(py)dpx = p(x)(8/2mm)5exp[ -Bp%/2m](p,/m)dp, (1)

since the jons are free in the directions along the surface.
Because the transmission coefficient (Sec.V) must be expressed
in terms of the energy of the tunnelling ion, Eq.(11) must be

rewritten in terms of the ion energy. The energy of the vibra-

tional states is W = pg/2m + V(x). For some arbitrary fixed x

in Xg < X 5 Xy,

W d[V(x) + pg/2m] = (p,/m)dp,

X = const.)

is obtained. Hence Eq.{11) becomes, in terms of the energy,
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N(pyx)dpy = p(x)/B7Zmmexpl-pp%/2m]dW

(o/L)VB]Znmexp(-8W)dW = N(W)dW. (12)

It is convenient at this point to obtain the field below
which an ion potential barrier will exist. With the assumed
sharp cut-off in V(x), the barrier is completely collapsed when
Xm = Xg3 setting V'(x) = 0, one obtains xp = (e/]6nsoE)% = 4h,

Hence denoting the collapsing field by Ep, it is found that
Em = 2.25x10°% v/m. (13)

The reliability of this value is of course dependent on the re-
liability of the assumed xg= 43, as well as on the validity of
the sharp cut-off assumption. That a barrier collapse does in-
deed take place is quite evident from Field Ion Microscope
studies!.

While 0 < E < 2.25x10° v/m defines the field range over which
a tunnelling process is relevant, a much more interesting range,
for present purposes, is 0 s E < 5x107 v/m (obtainable from Figs.
7 and 8). Over the latter range, the emission current density
is insensitive to the details of the ionization rate, so that re-
liable results can be expected therein. Moreover, fields higher
than 5x107 v/m are not likely to be found in the anode region of
discharge-produced plasmas. For these reasons, much of what

follows will be restricted to E < 5x107 v/m; the restriction,
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whenever imposed, will be pointed out in the text. In view of
the anode fields normally encountered, it is reasonable to state

that the reduced range of E does not really amount to a restrict-

ion of any significance.
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V. THE TRANSMISSION COEFFICIENT

The transmissivity of the barrier is obtained by a modified
WKB method!2?:13 which has been shown to be valid for all energies
of the incident particle, including those over the barrier top.
The same functional expression results for T(W) as is obtained by
the usual WKB method, but the method of derivation extends its
validity to all energies.

The transmissivity is givenl2s13 py

T(W) = [1 +Q(W)]?, (14)
where
X2
QW) = (z/n)J [2m{V(x) - W}T%dx, (15)
X1

and x;, X,, are as shown in Fig.5. With V(x) = -e2/16negx - eEx,

Eq.(15) becomes

X2
Q(W) = (Z/h)J [-2m(e?/16megx + eEx + w)]gdx. (16)
X1

The above variables may be referred to the potential energy dia-
gram of Fig.5. Only those values of W in Wy s W < Wy will be
considered here, so that the quantity inside the square brackets

of Eq.(16) is always 2 0. The values of x; and x, may be rela-

ted to the energy of the tunnelling ion. They are given by x;
-(W/2eE)(1 - YT-G ), x, = -(W/2eE)(1 + YT - G ), where G is
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given by G = e3E/4neoW2. Since W < 0, and G < 1 (see Fig.5), x;
and x, are always real and positive.

The integral in Eq.(16) has been evaluated! exactly and is

given by

Q(W) = BE"1/4y=3/2y(y) = o(E)y=3/2v(y), (17)
where

«(E) = BE-1/%, )

B = 4/2m a%/%/3ne,

a = e3/4ney,

y = -/aE/W,

viy) = (1/v2)(1 + N1-y?)V/2[F(k) - (1 - S1-y?)K(K) ],

k2 = 2(1-y2)1/2/(1+ /1-y2),
F(k) = [T/2[7 - k2sin2¢]'/2d¢

K(k) = [T72[1 - Kk2sin2¢]"1/2d¢

and y ranges over 0 s y < 1, corresponding to -« < W < Wp. Wy
is the energy at the top of the potential energy barrier and is
given by Wy = -[e3E/8neq]1/2.

By use Eqs. (12), (14), and (17), one can write Eq.(8) as
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W
. )1/ m exp(- W)dw
3= (eo/L)(s/2m)? Zon 1+ exp[ y=3/2v(y)] ’ )

where y, v(y) are as given by Eqs.(18).

VWi

Fig. 5. Ion potential well with details
relevant to tunnelling.

A glance at (18) for v(y) shows that to obtain an exact
value of (19) is probably hopeless; therefore, an approximating
expression for T(W) must be found.

Before proceeding, note that Eq.(19) is written in a hybrid
form for now because it is easier to obtain an approximation for
T(W) in terms of the quantities defined in Eqs.(18). Equation
(19) can be re-expressed solely in terms of W once a reasonable

approximation is obtained.



The variable y, as already noted,ranges over 0 <y < 1, cor-
responding to -» < W < W,. It can be seen that this range of W
does not correspond to the physical situation represented by the
potential energy curve of Fig.5, for there the Tower 1imit Wy is
some finite quantity. However, it is shown in Sec.6 that no sig-
nificant error results from the substitution Wy > -~ at the low-
er limit.

The details of the approximation of Eq.(17) and T(W) appear

in the Appendix. The result obtained there is

T(W) = gexpl-y(W/kn - D1, (20)

with y(E) = na(E)/v/8. While (20) can differ appreciably from
(14) for W << Wy, the integral (8) will be in error by no more
than a few percent because of the very rapid drop-off in the
value of the integrand as W decreases. A fuller discussion may

be found in the Appendix.
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VI. THE EMISSION CURRENT

By use of the expressions (12) and (20) in Eq.(8), one ob-

tains for the emission current

Wm _ -
j = %ﬁ[?:_m %J e BWeY(] W/Wm)dw
Wo
_eof B %5y Wm -(y/wy + B)W
= Z[-ZTT_mJ e J e m dw
Wo
_es[ g5 e sv/aE-y (gvak-y)z
T S S R
y/1/ak - 8

where ¢ = Wo/Wp > 1. Implicit in the evaluation of (21) is the
assumption that the energy levels of the ions in the potential
well form a contiuous spectrum. This is a good approximation
because the ions are very massive. A rough calculation based on
adsorption datall gives a level spacing of about 0.002 ev at the
bottom of the well and much smaller spacing above the neighbor-
hood of the bottom. Moreover, the broadening of the upper levels
by the finite tunnelling lifetime is at least several times the
level spacing, so that a true continuum results near the barrier
top; since only the topmost levels are relevant to ion emission
(see immediately below), the continuous spectrum assumption can
be considered to be rigorously valid.

Equation (21) can be cleaned up considerably for the follow-

ing reasons: The maximum field relevant to a tunnelling process

29



30

is Ey = 2.25x109 v/m, and since the expression
_ Sp—% -1e%
y - B/aE = 8.70x105E™% - 0.4347"1E (22)

is a decreasing function of E, it takes on its minimum value at
E = Ey. Choosing T = 100°K as an extreme possibility,there re-

sults
vy - gvaE = 3788. (23)

In actual application to the case of a cesium discharge, where T
is usually in the range 400-600°K, the lower bound of (23) will
be somewhat larger, but not by very much because the first term
dominates.

Using (23), one obtains the ratio of the second term to the

first in the brackets of Eq.(21) as

< e-3788(; - 1).

R (24)

Thus the second term is negligible if ¢ > ~1.002. In order to
discuss the relative magnitudes of the terms in Eq.(21) on a
quantitative basis, and also to prove the claims made in Sec.4
and in the Appendix about the negligibility of all contributions
except those from near the barrier top, the integral (21) will

be considered over regions R;, R,, R3 defined by
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Ry: 0.995 <y < 1.000
Ry: 0.990 <y < 0.995 (25)
Rs: 0 <y <0.990

The variable y is Wp/W as defined in Eqs.(18). Thus j = Lzr =
Sy Fha ey = At fw‘:? + f:", where W, = W(y = 0.995), W5 =
W(y = 0.990); wusing W = W,/y, one obtains W, = 1.005Wy, W3 =

1.010W,. The emission over R, is then
J(Ry) = M(E,B)[e™" - &71+7%%M],

where r = y - Wy 2 3788. The second term is -1078.2 times the
first, so that j(R;) = A(E,8)e”". Similarly, over the region R,
3(Rz) = A(E,B)e™ """, Thus j(Rp)/3(Ry) = e "% = 1078-2,
Finally, since j{R3) is at most 102j(R,) (see Appendix), both
j(Ry), j(R3) can be completely neglected relative to j(R;).
Therefore the value of Eq.(21) is essentially that given by eval-

uation at the upper limit only:

gvYat gvaE
5 = g%{zg_l% e . g%{zs ]% e . (26)
™) y/TTaE - 8 ™) (nB/vBR)E-3/* - g

The negligibilty of the contributions from all levels except
those near the barrier top is quite fortunate. For if this were
not so, it would not be possible to skirt the present lack of

knowledge of the potential near the bottom of the well. That the



contributions from all W < W, can be neglected is a consequence
of the large ionic mass (see Appendix).

As mentioned in Sec.IV, L(E,T) could not be obtained ana-
lytically. For this reason, plots of j/o = I, the emission den-
sity per unit ion surface density, are shown in Fig.6. These
plots are parametric in T. Because of the large range of E and
I, it was necessary to use a log-log plot. Hence Fig.6 does not
show 1 = 0 at E = 0, but this is easily seen to be the case by
examination of £q.(26), where both 1/L and the other factor in E

go to zero as E » 0.

-6 T T T T
@ 10
| 5
[«V]
o
£
©
o
= 14
=
—
S -18

99 T = 400 °K

N | PR | o 1 N | o
104 10° 106 107 108 109
E (v/m)

Fig.6. Plots of I as a function of E for various T.
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By use of Eq.(7) for o, it is possible to express the current

density in terms of fundamental constants and pertinent parame-

ters. Thus
o 2Liemm] (aB/vBa)E-3/% - g
L= oT = 2 J
j = or = (ego/e21) [u + eks Aeoo]r’ (27)
| whence

_ Aeog(u + eEs)qr
Aegg + gT ’

J (28)
with g = gg/e22 = 8.64x1035 m~2 joules~! for & = 4A (Sec. II).

The parameters appearing in £q.(28) are u = ¢ + ¢ - Wy,

F~ %
op, and the temperature, which enters via I'(E,T). Since I' is not
available in analytic form, Eq.(28) is plotted in Figs. 7-13 for
various values of the parameters. Because Eq.(28) is a three pa-
rameter family, a large number of plots would be required to give
a relatively complete idea of its behavior; Figs. 7-13 have been
chosen as exhibiting the salient features of this behavior.
In explanation, Figs. 7 and 8 are typical of the effect on j

of a variation in the adsorbed neutral atom density oy, per se.

(The effect of oo on u will be discussed later). It can be seen

that j is almost completely independent of oo for E < 2.25x107v/m.
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For fields E > 3x108 v/m, on the other hand, j becomes approxi-
mately a linear function of E and 0. That this is generally
true, rather than peculiar to these two plots, can be seen from
Eq.(28). Clearly, when gr << Aeocgy, j = (u + eEs)grl results,
which is independent of o, (and of A); this corresponds to the
Tower field range (see Fig.6 for r). With r large enough so that
gr >> Aeog, j = Aeop(u + eEs),which is linear in E and o,. Note
that since the transition rate constant A enters into Eq.(28) in
exactly the same way as oy, the same remarks apply to A as to oj.
Therefore, in the region gr << Aesy, which is the most interest-
ing for present purposes, an error in A of a few orders of magni-
tude will have no significant effect on j.

Next, Figs. 9 and 10 indicate the behavior of j with T. The
value oo = 1018 m~2 was chosen as approximating real conditions.
The very low values of u were used because in most cases, u = 0
for a discharge (see Sec.VII).

Finally, Figs. 11, 12, and 13 show the dependence of j on u
when u is small. The temperatures used are in the range of in-
terest of most cesium discharges. The reason for considering u
a parameter will be taken up in the next section.

It has been pointed out by Dr. H.S. Robertson that the above-
found independence of j on the details of the ionization rate is,
on physical grounds, not surprising. This is because the emiss-

jon process is essentially a current flow through two series
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conductances, an "ionization rate conductance" and a "transmiss-
ion conductance". For sufficiently high ionization rates, the
jonization conductance, which is not accurately calculable at pre-
sent, is ordinarily so large compared to the transmission conduct-
ance (which can be accurately calculated) that it can be consi-
dered a short circuit. Thus the result that the emission current,
for small currents, is independent of the details of the ioniza-
tion rate. This conclusion is independent of the functional form
of w(se), and so it lends support to the procedure leading to

Eq.(28).
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VII. THE DEPENDENCE OF THE WORK FUNCTION
ON THE ADSORPTION FRACTION

It will now be necessary to clarify why u has been chosen as
a parameter, when it would seem to be a fixed quantity for given
electrode and discharge medium combinations. In fact it is not;
the findings of Taylor and Langmuir?s'“ have shown a strong de-
pendence of the work function of tungsten on the degree of cesium
coverage on the surface. If ¢ depends on oy, then so will u =
b + (sF - eb) - Wg. Thus oy actually enters Eq.(28) in two ways:
directly as it appears there, and also through its effect on .
It has already been mentioned that in the current range of inter-
est, og has very little effect as it enters directly in j(E).
However, through its effect on p, it very strongly influences
j(E). This is borne out clearly by Figs. 11, 12, and 13.

The studies?»>!* of Taylor and Langmuir of cesium adsorption
on tungsten have provided valuable information on the effect of
adsorbed fractional monolayers of "neutral" atoms on the electron
work function ¢. Theoretically, the adsorbed fractional layer
is considered!® as a polarizable dipole sheet which for electro-
positive atoms such as cesium acts to reduce the work function
from its value for a bare surface. For small fractional cover-
ages (< 15%), the experimental results? give a linear decrease
in work function as the fractional coverage is increased. A de-

crease in work function of 1 ev occurs at a coverage of -~8.5%.
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Bcause the dipole moment per adsorbed atom decreases with an
increasing coverage (due to the depolarizing effect of the array),
the work function decrease rate drops off. A maximum decrease of
about 3 ev is found for a coverage of 67% monolayer. The value
4.8x10*"* cm~2 determined by Langmuir is taken as a monolayer for
cesium on tungsten.

The explanation of the reduction in work function by a "po-
larizable layer" at the surface leaves a lingering dissatisfact-
jon. Many objections can be raised about such a mechanism. In
a review article on thermionic electron emission, Nottingham!>
points out the almost complete lack of theoretical understanding
of such devices as the thoriated tungsten emitter, which depends
on just such a reduction in work function for its efficiency.
While this particular device has had uncounted applications over
some four decades, it appears to be as well understood today as
it was in the days of its discovery.

For present purposes, however, it suffices to say that the
effect clearly exists. Furthermore, sufficient information is
available so that its behavior can be known; this is all that is
required here.

Considering these results of Taylor and Langmuir, it is clear
that the quantity y might become zero or even negative. For a
bare tungsten surface, ¢ = 4.6 ev. The value of Wy , the per-

turbed valence level due to all the sources indicated in Secs.Il
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and III, has not been calculated; however, the value 3.6 ev ar-
rived at by Gadzuk3 by considering only surface and image forces
is probably reliable, since these are the most powerful at close
range. Additional evidence that u = 1 ev for a bare tungsten
surface is provided by Rasor and Warnerl®, who obtain a value of
about 1.05 ev through a consideration of the known adsorption and
vaporization energies of cesium, rather than by a quantum mech-
anical calculation of the level shift. Levinel7 also obtains the
value 1.05 ev. Thus p = 1 ev for a bare surface will be used,
while with only 8.5% monolayer, u = 0. These results will be
considered in Sec. VIII.

In the event that u becomes negative, the emission current
remains zero until a value of E is reached at the anode surface
such that (see EQ.(28)) u + eEs > 0, at which point emission will
commence. That is, no emission would be possible with y+eEs < 0
because no ionization would be taking place on the anode surface.

Under ordinary conditions, it is easy to infer from known
dataZs1%,16 that most of the anode will be operating in the re-
gion around u = 0. However, irregularities in surface properties
can cause significant variations in p over the surface. The con-

sequences of this variation will be indicated in Sec.VIII,



VIII. DISCUSSION OF THE EMISSION EQUATION

The result (28) for the ion emission current is directly ap-
plicable to the cesium vapor discharge. However, it is first ne-
cessary to relate the ion current to the total discharge current,
since no method presently exists by which the ion current alone
can be measured. The ion current at the anode, as well as at
other points in the discharge, is ordinarily only a smail fract-
jon of the total current; the major portion is due to electron
flow. In a recent study, Robertsonl® obtains a result that gives
the ratio of the ion current density at the anode surface to that
in the plasma adjoining the anode. Since the ratio of electron
to ion current density in the plasma is simply the ratio of the
respective mobilities, it is possible to infer the ratio of ion
to total current both in the plasma and at the anode surface.
Thus the expression (28) can be related to the experimentally
measurable discharge current.

As a convenient guide, the discharge may be considered as
consisting essentially of a bundle of contiguous filamentary cur-
rent elements originating at one electrode and terminating at the
other. While currents to the walls by means of ambipolar diffu-
sion will certainly occur, these do not essentially modify the
picture. For fixed discharge parameters (discharge medium, pres-

sure, temperature, confining geometry, etc.) the diséharge
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dynamics are essentially determined by the external circuit con-
ditions; the discharge operates at a given set of conditions in
accommodation to the demands of the external cicuitry. That is,
all internal plasma activity,such as ionization and loss rates,
charged and neutral currents, and so on, must adjust to meet ex-
ternally imposed conditions. The situation is too complicated
to describe in detail; moreover, much of it is not yet fully
understood. For a fairly up-to-date discussion, some excellent
review articles in the "Handbuch der Physik" are availabel®. A
number of texts29°23 can also be consulted.

Equation (28), in combination with the results obtained in
reference 18, can be utilized to give the particular accommoda-
tion that must occur at the anode surface for steady state. That
is, the electric field that must develop at the anode for a given
total current may be determined. Physically, this means that the
charge distributions in the anode vicinity will arrange them-
selves such that the required field results. Because of the de-
pendence of Eq.(28) on u = ¢ - Wy', it can immediately be fore-
seen that difficulties will develop in obtaining a description
of anode conditions, since a real anode is not at all a struct-
ureless continuum, but exhibits variations in work function and
adsorption properties. Since these properties determine u, and
hence j, it is clear that a uniform description of anode fields

is not possible. That is, the microproperties of a particular
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anode will be all-important in determining the conditions at its
surface. The situation is not unlike that of electron field
emission, where the verification of the Fowler-Nordheim equation
was for many years impeded by just such variations in surface
properties. Among the many anode surface irregularities which
can occur may be mentioned substrate imperfections, surface con-
tamination, oxide flakes, gross physical features due to fabric-
ation, and so on.

It thus becomes necessary, in terms of the above picture of
the discharge as a bundle of current elements, to individually
consider the elements of area which are the positive (anode)
termini of these current elements. The emission from these ele-
ments of area will then proceed according to Eq.(28) as particu-
larized by the local value of u. The value of u may be obtained
from the data of reference 2, provided the anode microproperties
are known. The much more recent study of Rasor and Warnerl® is
probably more useful in that it gives the reduction in work
function for a variety of electrode-discharge medium combina-
tions.

As a final point, mention may be made of an experimental
finding of Langmuir and Kingdon?* on the emission of cesium ions
with an applied field. They obtained the result that ion emis-
sion in the presence of an adsorbed fraction 8 is negligible ex-

cept when 8 is very small. The fields used by them were in the
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lower field range of Figs. 11-13. The very rapid drop-off in
current as u decreases (6 increases) with fixed field is there
clearly evident, so that in this detail, Eq.(28) agrees qualita-
tively with experiment.

In summary, it is necessary to point out that because of the
approximations and assumptions leading to the emission equation,
the present investigation is in a sense an exploratory one. In
some cases, such as the assumptions on the ion potential energy
near the anode surface and the representation for the surface
ionization rate, the procedures used have been an unavoidable o
necessity; sufficient information is not at present available ™.
to permit definite statements to be made. Other assumptions,
e.g., the utilization of a constant mean distance 2 of the ions
from the anode surface, were made for the sake of convenience;
it was not felt worthwhile to introduce the considerable compli-
cation of including the field dependence of £ since, under ordi-
nary conditions, most of the ions are clustered around x = 4-6 R.

While many of the elements incorporated into Eq.(28) are thus
open to refinement and improvement as more becomes known about
them, it is felt that the process underlying the calculation,
i.e., the steady-state surface ion supply derived in Sec.III, is
basically sound, and as such constitutes a reliable foundation

for the construction of the emission equation.



APPENDIX

It was not found possible to integrate Eq.(19) with T(W) as
given by Eqs. (14), (17) and (18). 1In this section an approxima-
tion to T(W) will be found by means of which the integration can
be effected.

The expression to be approximated is

T(y) = 1/[1 + exp{Q(y)3] = 1/[1 + explay=3/2v(y)}], (29)

where v(y) is given in Eqs. (18) and y = Wy/W. When the approx-
imating expression found here for T(y) is put in Eq.(19) and the
integral evaluated, it is found that the total contribution from
Q(y) = 30 is completely negligible. Therefore, for the sake of

brevity, the discussion will be 1imited to 0 < Q(y) s 60. Since
Qly) = a(E)y=3/2v(y), and «(E) is very large under all conditions
(a 2 3.61x103), v(y) = 0 will be rquired if 0 < Q < 60 is to be

satisfied; i.e., it is necessary that y = 1 (see Figl14 for v(y)).

Suppose now that a function U(y) can be found such that

[
—~
«<
~—

1

v(y) for v(y) =1,

[ et
—
—
~
"

v(1), + (30)

u(n) = v'(Q1),

where the prime denotes differentiation with respect to y, and
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furthermore such that [U(y) - v(y)]/v(y) > 0 morotonically as y
approaches 1. Then the worst possible case to consider in the
approximation process is that for which o(E) in Eq.(29) takes on
its minimum value, since this will result in the largest depart-
ure from y = 1 which will satisfy Q(y) = ay=3/2v(y) s 60. That
is, larger values of a(E) will require values of y closer to y =
1 in order to retain Q s 60, and this will increase the accuracy
of the approximation by virtue of the fact that (U - v)/v > 0
monotonically as y ~ 1.

The smallest value of o = BE'% of relevance to a tunnelling
process is op = 3.61x103 (the field for which the barrier col-
lapses is 2.25x10° v/m). Therefore, the search for an approxi-
mation will be confined to this minimum value of o; if a good
approximation for this case can be found, then it will be even
better as the field is increased.

As a convenient outline, the following will be done. The
interval 0 <y < 1 is divided into three regions Ry, Ry, R3,
(see Sec.VI), such that Ry: 0.995 <y s 1; Ry: 0.990 < y <
0.995; R3: 0 <y < 0.990. The result is then obtained that
the emission over the three regions is such that j, < 10-8j,,
while j3 = 102j, at the very most. Therefore, if it can be
shown that the approximating expression is valid in both R; and
R,, then only the contribution from R; need be retained. For the

contribution from R, is then validly approximated but negligible,



while that from R; is at most a relatively small multiple of that
from R,. A simple expression that has been found to satisfy the

conditions (30), as well as the monotonicity requirement, is
U(y) = (n//B)(1 - y3/2). (31)

The factor =/V/8 arises in fitting U'(1) = v'(1) = - 3n/2/8.
The following must be shown: (1) [U(y) - v(y)]l/v(y) »~ 0O
monotonically as y >~ 1, and (2) in R; and R,, the expression

w(y) = [1 + explay™3/20(y)}]-! is a good approximation to T(y)

[1+ exp{ay'3/2v(y)}]'1. The relative error in Q due to the re-

placement v(y) -+ U(y) is 8Q/Q = ay=3/2[U(y) - v(y)1/ay~3/2v(y)

(U - v)/v. Therefore, if (U - v)/v > 0 monotonically as y ~ 1,
so does AQ/Q.

It is straightforward but tedious algebra to show rigorously
that U/v > 1, as y > 1_. In order to cover the range of inter-
est (Q s 60) to the necessary accuracy, eight terms were required
in the series expansions for the elliptic integrals F(k), K(k)
appearing in v(y). This will not be reproduced here; for y very
close to 1, three terms in the series for F(k), K(k) give suffi-

cient accuracy. The result is v(y) = 3n(1 - y2)/8/2, so that

- vy3/2
b/Q = %1 = 3L, (32)

Since both 1 - y3/2, 1 - y2 approach zero as y -~ 1, they may be

replaced by their derivatives according to 1'Hospital's rule:
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8Q/Q = Yy/y - 1 =1/ - 1,

which clearly approaches zero monotonically from above as y - 1
from below. Table I and Fig.14 show this behavior clearly.

Next, the relative error [t(y) - T(y)1/T(y) over R; and R,
will be found, or rather at the end-points. The relative error
within the intervals will be smaller than at the end-points by
virtue of the monotonicity of AQ/Q.

The values of Q at y = 0.995, 0.990 can be obtained from the
computed values of v(y) in Table I, and by using oy = 3.61x103.
These are found to be Q = 30, 60, respectively. Therefore, for
either of these end-points, T = exp(-Q) to very high accurécy.
Whereupon, if there is an error AQ in Q due to the replacement

v(y) > U(y), then the error in T is

AT =
n

Lo, (33)

i e~8

1

where T(n) = g%“I(Q) = (-1)™. Hence
o7 = 17 L0 )" = 1T
= T exp(-aQ) - 1],

and the relative error in T is

a7 = e, (34)

The values of AQ = amy'3/2(U - v) for y = 0.995, 0.990 can be
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obtained by utilizing Table I; there results 4Q(0.995) = 0.00945,
AQ(0.990) = 0.0385. Hence Eq.(34) gives (aT/T)g 995 = - 0.009,
(aT/T)o_ 990 = -0.037 as the relative errors in T over Ry, R,,
respectively. Thus the replacement v(y) -~ U(y) is valid over

Ry, Ry.

) and U(y), together with the
y) = [uly) - v(y)1/v(y).

Table I. Comparison of v(y
relative error §(

y v(y) U(y) s(y)
0.00 1.0000 1.1107 0.117
0.10 0.9817 1.0755 0.096
0.20 0.9370 1.0115 0.080
0.30 0.8718 0.9282 0.065
0.40 0.7888 0.8300 0.052
0.50 0.6900 0.7174 0.040
0.60 0.5768 0.5945 0.031
0.70 0.4504 0.4603 0.022
0.80 0.3117 0.3154 0.014
0.90 0.1613 0.1625 0.007
0.95 0.0820 0.0823 0.003
0.990 0.0166 086 0.0166 191 0.0006
0.995 0.0083 173 0.0083 199 0.0003
1.000 0 0 0

It was stated earlier in this section that the contribution
to the integral (19) over R; is at most about 102j(R,). That
such is the case can be easily seen by rewriting (19) entirely
in terms of y = Wy/W and making the replacement Wy » - (note
that this replacement will increase the contribution from R,

yet it remains completely negligible). Equation (19) therefore
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becomes

1 -BWm/y
e 7 dy (35)
o 1+ explay-3/2v(y)] Y

§ = Hou8,Ly) |

Thus even if the integrand in (35) were constant over Rs, the
contribution therefrom would be j(R3) < (0.990/0.005)xj(R,) =
200j(R,). In reality, the integrand decreases rapidly as y » 0.

In view of the above, Q and T are reliably approximated by

the expressions

OO
—
<
~—
2

= ay™3/2(n/v8) (1 - y3/2) = y(y™3/2 - 1), (36)

—
—
<
S
1

t(y) = [1 + expiy(y=3/2 - 1)11°1, (37)

1.2 — —_
1,0 4
U(y)
; 0.8r~
>
e olel v(y) |
>
oD
0.4t
0,2}
0 R e
0 0,2 0,4 0,6 0.8 1,0

Fig.14. Plots of v(y) and U(y).
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A difficulty that remains is that if Eq.(37) is put in the
emission equation (19), it turns out to be still impossible to
perform the integration. Therefore, t(y) must itself be approx-
imated by some expression that will retain a reasonable accuracy,
while at the same time permitting integration of Eq.(19).

It may seem that an unnecessary detour was taken in arriving
first at 1(y), which must then be also approximated. However,
it will be seen shortly that t(y) is approximated by an expres-
sion 6(y) of rather different form. Had 6(y) been used to com-
pare directly with T(y), it would have been difficult to say any-
thing about the error propagation. This is because the exponent
in T(y) is parametric in a, and since the fit must be made by
considering the total expression for the exponent, it becomes
necessary to obtain the value of y as y(a) for a given value of
the exponent. This is an impossibly tedious task if the origin-
al expression ay~3/2v(y) = n, say, is considered, whereas it is
a simple matter to invert y(y=3/2 - 1) = n for y = y(v,n).

Consider now Eq.(37) for t(y). The range of t(y) is seen to
be 0 < t(y) s 1/2, corresponding to 0 <y < 1. From here on, it
will be easier to work in terms of x = 1/y = W/Wy, the reason
for having so far used y as variable being that it made the ex-

pressions (18) much simpler to work with. Thus Eq.(37) becomes

t(x) = [1 + exp{y(x3/2 - 1)3]-1, (38)



with

o
tA

(x) s 1/2,

for (39)

The behavior of t(x) is as shown in Fig.15, wherein the dashed
part of the curve corresponds to energies above the barrier.

This is not considered here.

Fig.15. Behavior of t(x).

From the form of t(x), together with the values at the end-
points, the following suggests itself as a likely (and integra-

ble) approximation:
o(x) = (172)e 7 71 L (), (40)

where c must be fitted. It is clear that the end-point values
of 6(x), t(x) are identical for any nonzero value of c.

The values of 8(x) and t(x) can now be easily compared be-
cause of the simple analytic forms of the exponents in each. It

will only be necessary to compare for values of the exponent in
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Eq.(38) which lie in 0 < y(x3/2 - 1) < 60. Outside this range,
o(x) > T(x), so that the contribution to j over 60 < (exp) < «
will be increased by the approximation 6(x) = T(x), yet is com-
pletely negligible (see Sec.VI). Hence the actual contribution
if T(x) were used would certainly be negligible over this latter
interval.

Suppose then that y(x3/2 - 1) = n < 60; this can be inverted

to give x = (1 + n/y)2/3 = 1 + 2n/3y, because y = 4000. There-

1

fore, y(x - 1) = 2n/3. The choice ¢ = 1 in Eq.(40) gives a good

fit; hence the expressions

D
—
=3
~—
[

(1/2)exp(-2n/3),
(41)

~
—

=
~—

il

(1 +en)™!

will be compared. Values of 6(n) and t(n) over 0 < n < 60 are
given in Table II, together with the weighted relative error

§ = q(n)(6 - t)/r. The weighting factor Q(n) is just the value
of the integrand of Eq.(19) normalized so that (1) = 1; that is,
(1) =1 = b(1/2)exp(-gHy), so that b = 2exp(BWy). Therefore,

§ = 2(8 - 1)exp[-BWp(x-1)]. For 0 < n < 60, x-1 = 2n/3y, and
using Wy for E = Eg = 2.25x10% v/m (i.e.,-Wp has its maximum va-
lue for this field), one can obtain 0 s [-gWp(x-1)] < 0.0206.
Hence, for comparison purposes in this range, exp[-g8Wph(x-1)] = 1,
and § = 2(6 - 1) can be used.

In view of the fact that the weighted error (see Table II)
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resulting from the substitution t(x) -~ 8(x) is everywhere within
about 2%, 6(x) will be considered a fair representation for t(x)

and T(x). Therefore,
T(W) = (W) = 6(W) = (1/2)expl-y(W/Wy - 1)1, (41)
where, as previously stated, W ranges over Wy < W < Wp.

Table II. Comparison of 6(n) and t(n), together with the
weighted relative error &(n) = 2[6(n) - t(n)].

n t(n) 6(n) §(n)
0 0.5000 0.5000 0
0.01 0.4975 0.4970 -0.0005
0.02 0.4950 0.4935 -0.0015
0.03 0.4925 0.4900 -0.0025
0.05 0.4870 0.4835 -0.0035
0.10 0.4750 0.4675 -0.0075
0.20 0.4500 0.4375 ~-0.0125
0.50 0.3775 0.3580 -0.0195
1.00 0.2680 0.2567 -0.0113
1.50 0.1825 0.1843 +0.0018
2.00 0.1180 0.1315 0.0135
3.00 0.0470 0.0675 0.0205
4.00 6.0175 0.0340 0.0165
5.00 0.0065 0.0175 0.0110
6.00 0.0025 0.0080 0.0055
10.00 ~exp(-10) exp(-7.26) 0.0010
15.00 ~exp(-15) exp(-10.69) ~exp(-10.69)
20.00 e e i
30.00 e ieeeee e
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